

Table of Contents

	Timeouts: Understanding and applying absolute and relative methods

	1. Basic concepts

	Absolute timeout

	Relative timeout

	2. The problem of jitter in relative timeouts

	3. Practical example: Relative timeout

	Relative timeout: Output example

	4. Practical example: Absolute timeout

	Absolute timeout: Output example

	5. Comparison between absolute and relative timeouts

	Final considerations

 Daniel Ferreira Domingos da Silva

Timeouts Understanding and applying absolute and relative methods

Working with timers in applications – especially in Lua environments such as Emilua – understanding the difference between absolute timeout and relative timeout is essential for controlling task execution with precision. This distinction is reminiscent of the differentiation found in linguistics, where "Absolute tense situates events in a fixed timeline, while relative tense expresses temporal relations relative to the moment of speaking". This analogy helps us understand that, just like in language, timeout methods have distinct approaches to managing time.

1. Basic concepts

Absolute timeout

 In an absolute timeout, you define a fixed point in time when an operation should expire. This method is ideal when a task must occur at a specific time, regardless of any delays in execution. Much like absolute tense in linguistics, the event is placed on an immutable timeline.

Relative timeout

 In a relative timeout, the expiration is defined as a time interval from the current moment – that is, time is measured relative to the moment of execution. This approach is practical for recurring tasks, although minor delays may accumulate if previous executions take longer than expected. This concept is similar to relative tense in language, which describes events based on the current moment.

2. The problem of jitter in relative timeouts

 When using a relative timeout, small delays in each iteration (for example, due to I/O operations or additional processing time) can accumulate over multiple cycles, leading to jitter. This means the actual elapsed time drifts away from the expected schedule.

Below is an example of a relative timeout in Emilua. Notice that even though the code asks for 1 second per iteration, slight variations may lead to a progressive difference between expected and actual timing.

3. Practical example: Relative timeout

 local time = require 'time'

local timer = time.steady_timer.new()
local start_time = time.steady_clock.now()
local i = 0

while true do
 i = i + 1

 timer:expires_after(1)
 timer:wait()

 local current_time = time.steady_clock.now()
 local elapsed = current_time - start_time

 local formatted_message = format("Iteration {0} completed after {1:.3f} seconds", i, elapsed)
 print(formatted_message)
end

Relative timeout: Output example

 Due to the nature of relative timeouts, minor delays may accumulate over iterations. Thus, the output might be something like:

 Iteration 1 completed after: 1.000 seconds
Iteration 2 completed after: 2.012 seconds
Iteration 3 completed after: 3.018 seconds
Iteration 4 completed after: 4.025 seconds

Even though each cycle attempts to wait 1 second, occasional delays (e.g., in the print execution or the wait itself) can cause slight deviations that add up over time.

4. Practical example: Absolute timeout

 To address jitter, an absolute timeout defines a fixed point in time at which each iteration should complete. This way, the timer remains synchronized with an initial reference, rather than shifting each subsequent iteration based on the last.

 local time = require 'time'

local start_time = time.steady_clock.now()
local timer = time.steady_timer.new()

local i = 0
while true do
 i = i + 1

 timer:expires_at(start_time + i)
 timer:wait()

 local current_time = time.steady_clock.now()
 local elapsed = current_time - start_time

 local formatted_message = format("Iteration {0} completed after {1:.3f} seconds", i, elapsed)
 print(formatted_message)
end

Absolute timeout: Output example

 Assuming there are no unexpected delays, the output might be:

 Iteration 1 completed after 1.000 seconds
Iteration 2 completed after 2.000 seconds
Iteration 3 completed after 3.000 seconds
Iteration 4 completed after 4.000 seconds

In this approach, the timer remains synchronized with the fixed point, ensuring each iteration occurs exactly at the expected time.

5. Comparison between absolute and relative timeouts

	Aspect
	Absolute timeout
	Relative timeout

	Definition

	Fixed point in time (e.g., start_time + i seconds)

	Time interval (e.g., wait 1 second)

	Precision

	Maintains synchronization with an exact schedule

	May accumulate delays if each iteration takes too long

	Ideal use

	Precise scheduling (e.g., daily events)

	Recurring tasks without strict alignment

	Output example

	Iteration 1: 1.000 s; Iteration 2: 2.000 s; …​

	Iteration 1: 1.000 s; Iteration 2: 2.012 s; …​

Final considerations

 The choice between absolute timeout or relative timeout depends on the context and specific timing requirements. Below is an enhanced summary of the characteristics of each approach:

Absolute timeout

	
Advantages:

	
Ensures operations occur at fixed points on the timeline;

	
Ideal for precise scheduling (e.g., daily tasks at specific times).

	
Ideal Output:

	
Each iteration shows an elapsed time exactly as expected (1s, 2s, 3s, etc.).

Relative Timeout

	
Advantages:

	
Simple to implement for recurring tasks;

	
Each cycle resets the count from the current moment.

	
Disadvantages:

	
Minor delays can accumulate, causing divergence between expected and actual elapsed time.

	
Example Output:

	
Iteration 1: 1.000 s; Iteration 2: 2.012 s; Iteration 3: 3.018 s; Iteration 4: 4.025 s.

Just as linguistic concepts of time allow us to situate events absolutely or relatively, timeout methods provide distinct strategies for managing time. The choice of method should be determined by the context in which they are applied.

EPUB/nav.xhtml

Table of Contents

		Timeouts: Understanding and applying absolute and relative methods

		1. Basic concepts

		Absolute timeout

		Relative timeout

		2. The problem of jitter in relative timeouts

		3. Practical example: Relative timeout

		Relative timeout: Output example

		4. Practical example: Absolute timeout

		Absolute timeout: Output example

		5. Comparison between absolute and relative timeouts

		Final considerations

		Table of Contents

		Start of Content

EPUB/avatars/default.jpg

EPUB/headshots/default.jpg

